8. Research directions in polytope theory

OVERVIEW ... beyond the lecture

o rigidily theory

geometry / topolosy

- · spectral polytope theory
- · symmetric polytopes
- · inscribed polytopes

Combinatorics

- · 20notopes & hyperplene arrangements
- · triangulations & dissections
- · Stanley-Reisner rings & Cohen-Macauley complexes
- polytope algebra

• toric varieties

algebra

lattice polytopes

algorithms / complexity

- e computational polytope theory
- · Simplex algorithm and the Hirson conjecture
- o abstract polytopes
- airected polytopes

generalizations

- complex | quaternionic polytopes
- sphenical/hyperbolic polytopes
- · polyhedra = unbounded polytopes
- · non-convex polytopes
- o infinite-dimensional polytopes
- o convex bodies

8.1 Lattice polytopes

Def: a lattice polytope has all its vertices in Zd.

Thm: (Pick's theorem) 1899

Area =
$$\frac{b}{2} + \frac{b}{2} - 1$$

Ehrhart theory

$$\rightarrow$$
 $vol_{L} := \#(nPnZ^2) = (2n)^2$... is a polynomial

Thm: (Ehrhart) 1962

Given a d-dimensional lattice polytope. Then $\#(nPn\mathbb{Z}^d)$ is a polynomial in n of degree d.

Question: What do the coefficients c; mean?

- · Ca = volume of P (this generalizes Pick's theorem)
- Ca-1 ≈ surface volume (for convex polytopes
- co = Euler characteristic = 1

Reciprocity:

• $L(P, -1) = (-1)^d \times \text{interior lattice points of } P$ (Ehrhort - Macdonald reciprocity) Question: which polytopes are lattice polytopes for sufficiently high-dimensional Zd?

Thm: The regular n-gon for n ≥ 5 is not a lattice polytope.

Def: a lattice polytope is reflexive if its polar aual is a lattice polytope as well.

Thm: For each de IN exist only finitely many reflexive d-polytopes.

Other subdirections:

- 01-polytopes (eg. metroids, enumeration, ...)
- empty & hollow lattice polytopes (finitely many, '91)
- toric varieties

8.2. Zonotopes & hyperplane arrangements

Def: a zonotop ZCRd

- (i) is the projection of a cube.
- (ii) is the Minkowski sum of line segments.
- (iii) has only centrally symmetric faces.
- (iv) has only centrally symmetric 2-faces.

hexagon

Minkowski sums: P+Q := {p+q | peP, qeQ}

$$\mathbb{R}^3 =$$

Examples:

- 1) cubes (in all dimensions)
- 2) centrally symmetric polygons
- 3) prisms over the above
- 4) permutchedron

generators

Generating zonotopes RCRd finite

$$\rightarrow$$
 2on(R):

- if no d vectors in RCRd are linearly dependent, then Zon (R) is generic.
- · generic zonotopes are examples of cubical polytopes := all faces are comb. cubes

OPEN: classify the simple 3-zonotopes (Grunbaum - Cuntz conjecture: 3 families + 90)

Hyperplane arrangements

 $\underline{\mathsf{Ex}}$: the combinatorial type of a zonotope is independent of the length of the generators.

Question: Given n (generic) hyperplanes in Rel.
How many chambers do they create?

with a generators?

$$f_0 = 2 \sum_{k=0}^{d-1} {n-1 \choose d-1}$$

8.3. Rigidity theory of polytopes

Classical rigidity theory:

o given on embedded graph, can it be deformed continuously with changing edge lengths?

Thm (Cauchy's rigidity theorem) 1813 (local rigidity)

- 1) a 3-polytope with rigid 2-faces is itself rigid
- 2) two 3-polytopes with pair-wise isometric 2-foces are isometric.
- 3) Let $\varphi: \mathcal{F}(P) \longrightarrow \mathcal{F}(Q)$ be a face lattice isomorphism. If φ extends to an isometry on all $\sigma \in \mathcal{F}_2(P)$, then to extends to an isometry on all of P.

(globar rigidity)

convexity is crucial

NOTES:

- · by Cauchy: 1-skeleta of simplicial polytopes are rigid
- o not true when surface is non-convex
 - -> Conelly's flexible polyhedra
- o Thm: The 1-skeleton of every simplicial surface, convex or not, that is not a sphere, is always rigid. 2022
- rigidity questions were surprisingly connected to the Upper Bound Conjecture.

OPEN: What if I only know the 2-skeleton + the shape of each 2-face?

OPEN:

- o given eage-groph + eage-lengths, is the combinatorial type uniquely aletermined?
- of vertices from origin, is the polytope uniquely determined?

→ Yes if

- (i) combinatorial type is known
- (ii) polytope is centrally symmetric

Thm: (Stoker's conjecture, Wang & Xie) 2022

Given a combinatorial type and the dihedral angles, the face angles are uniquely determined.

Thm: (Kalai's conjecture, Novik & Zheng) 2022

The edge-graph + space of self-stresses determin

the polytope up to affine equivalence.

8.4. Spectral polytope theory

Adjaæncy moti:x

$$P = \frac{1}{4}$$

$$G_p = \int_{4}^{4} C_4$$

$$\{-1^{2}, 2^{1}\}$$
 $\{-2^{1}, 0^{2}, 2^{1}\}$ $\{-\varphi^{2}, \psi^{2}, 2^{1}\}$

$$\{-3, -1, 1, 3, 3\}$$

$$K_n \left\{ -1, n-1 \right\}$$

$$\{-\sqrt{5}, -2, 0, 1, \sqrt{5}, 3\}$$

• If edge-lengths are 1, then

circumradius =
$$\left(2 - \frac{2\theta_2}{\deg(G_P)}\right)^{-\frac{1}{2}}$$

Spectral realizations:

$$P = \iiint_{4}^{2} G_{p} = \bigvee_{4}^{2} C_{4} G_{p} = \begin{cases} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{cases} \in \mathbb{R}^{4 \times 4}$$

second largest eigenvalue

Spec
$$(A(G_P))$$
 = $\left\{-2, 0, 2, 2, \frac{1}{2}\right\}$

$$\begin{array}{c} \uparrow & \uparrow \\ \theta_2 & \theta_1 \end{array}$$

eigenvectors to
$$\theta_2 = 0$$
: $(1,-1,1,1) \in \mathbb{R}^4$
 $(1,1,-1,-1) \in \mathbb{R}^4$

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \qquad \begin{array}{l} P_1 = (1, 1) \\ P_2 = (-1, 1) \end{array}$$

$$p_2 = (-1, 1)$$

$$P_3 = (-1, -1)$$

$$p_4 = (1, -1)$$

Thm: (Izmestiev) 2008

The 1-skeleton of a polytope is a spectral embodeling of its (weighted) edge-graph to the second-largest eigenvalue θ_2 .

8.5. Inscribed polytopes

 \underline{Def} : $P \subset \mathbb{R}^d$ is inscribed (in a sphere) if there exists a sphere $S \subset \mathbb{R}^d$ that contains all vertices of P.

Thm: (Steinitz) 1928

If G_1 has an independent set of size $> \frac{1}{2}|V(G_1)|$, then a polytope with edge-graph G cannot be inscribed.

<u>Inm</u>: (Rivin) ~ 1980

A combinatorial type \mathcal{F} of e 3-polytope is inscribable if there exists a function $\omega: \mathcal{F}_1 \longrightarrow (0, \pi)$ so that

$$\sum \omega(e)$$
 $\begin{cases} = 2\pi & \text{F is eage set of a facet} \\ > 2\pi & \text{F is eage set of any other simple eage cycle} \end{cases}$

OPEN: Is there a completely combinatorial deseription of edge-graphs of inscribed 3-polytopes?

- polytopes with a regular bipartite edge-gropn are the boundary case of Steinitz' theorem.
- o if a zonotope is inscribed, then it is simple

OPEN: Is the following list 17 inscribed 3-zonofoper complete?

[Maneche & Sonyal]

8.6. Symmetric polytopes

tetrahedron

cube

octahedren icosahedren dodecahedren

Def: The symmetry group of PCRd is the group of isometries of Rd that fix P set-wire

Thm: Every finite group is the symmetry group of a polytope.

Del: vertex-transitive := Aut(P) acts transitively on the (orbit polytope)

vertices of P

<u>Thm</u>: (Babai) ~ 1978

Frenzitive polytope except for

- (i) abelian groups excluding \mathbb{Z}_2^r .
- (ii) generalized dicyclic groups.

Thm: If $Z \subseteq \mathbb{R}^d$ is a vertex-transitive zonotope, then Z is a W-permutahedron. 2020

(combinatorial types)

Def: edge / facet / δ -face - transitive := analogously

Ex: Pis vertex-transitive \leftrightarrow P° is facet transitive

regular := transitive on faces of all dimensions

OPEN: classify δ -face-transitive polytopes for some $\delta \in \{1, ..., d-2\}$ (vertex- and facet-transitive is too wild for classification)

OPEN: Is the following table for the number of edgetansitive d-polytopes correct?

Inm: There exists a coloring of the edge-graph Gp so that $Aut(Gp) \cong Aut(P)$ zozi

OPEN: 1) are edge colors sufficient if d ≥3?

2) can one color with edge-length and vertex-origin distances?

8.7. Stanley-Reigner rings

#vertices of P

Def: • $\mathbb{K}[x_1,...,x_n]$... polynomial ring in \underline{n} variables over some field \mathbb{K}

· face ideal or Stanley-Reisner ideal

$$I_{P} := \left\langle x_{i_1} \cdots x_{i_r} \mid \{i_1, \dots, i_r\} \text{ are not a face of } P \right\rangle$$

· face ring or Stanley-Reisner ring

$$lk[P] := lk[x_1,...,x_n]/I_P$$

Thm: The (coarse) Hilbert series schisfies

$$H(lk[P],t) := \sum_{\delta \geq 0} dim(lk[P]_{\delta}) t^{\delta}$$

$$= \frac{1}{(1-t)^{n}} \sum_{n=0}^{d} f_{i-1} t^{i} (1-t)^{n-i}$$

$$= \frac{h_{0} + h_{1}t + \dots + h_{d}t^{d}}{(1-t)^{d}}$$

Historical note:

The Upper Bound Confecture was proven by using algebraic techniques on this ring (Cohen- Macauley property + Reiner's criterion)

8.8. The polytope algebra

Recall: an algebra is a vector space with a multiplication

- matrices + matrix multiplication
- polynomials + usual multiplication
- R3 + cross product

Def: polytope algebra (of polytopes in Rd)

Relations:

Minkowski addition

algebras

(i)
$$[P] \cdot [Q] = [P+Q]$$

(ii)
$$[PuQ] + [PnQ] = [P] + [Q]$$

One can define exp and log for polytopes:

$$\exp([P]) := \sum_{n} \frac{[P]^n}{n!}$$

$$\log(\bullet + [P]) := \sum_{n \ge 1} (-1)^{n+1} \frac{[P]^n}{n}$$

The polytope algebra is the universal translation-invariant valuation on polytopes.

$$\varphi(A \cup B) + \varphi(A \cap B) = \varphi(A) + \varphi(B)$$

e.g. volume, surface area, Euler characteristik, mixed volumes ...